1,304 research outputs found

    Recognizing Partial Biometric Patterns

    Full text link
    Biometric recognition on partial captured targets is challenging, where only several partial observations of objects are available for matching. In this area, deep learning based methods are widely applied to match these partial captured objects caused by occlusions, variations of postures or just partial out of view in person re-identification and partial face recognition. However, most current methods are not able to identify an individual in case that some parts of the object are not obtainable, while the rest are specialized to certain constrained scenarios. To this end, we propose a robust general framework for arbitrary biometric matching scenarios without the limitations of alignment as well as the size of inputs. We introduce a feature post-processing step to handle the feature maps from FCN and a dictionary learning based Spatial Feature Reconstruction (SFR) to match different sized feature maps in this work. Moreover, the batch hard triplet loss function is applied to optimize the model. The applicability and effectiveness of the proposed method are demonstrated by the results from experiments on three person re-identification datasets (Market1501, CUHK03, DukeMTMC-reID), two partial person datasets (Partial REID and Partial iLIDS) and two partial face datasets (CASIA-NIR-Distance and Partial LFW), on which state-of-the-art performance is ensured in comparison with several state-of-the-art approaches. The code is released online and can be found on the website: https://github.com/lingxiao-he/Partial-Person-ReID.Comment: 13 pages, 11 figure

    A Light CNN for Deep Face Representation with Noisy Labels

    Full text link
    The volume of convolutional neural network (CNN) models proposed for face recognition has been continuously growing larger to better fit large amount of training data. When training data are obtained from internet, the labels are likely to be ambiguous and inaccurate. This paper presents a Light CNN framework to learn a compact embedding on the large-scale face data with massive noisy labels. First, we introduce a variation of maxout activation, called Max-Feature-Map (MFM), into each convolutional layer of CNN. Different from maxout activation that uses many feature maps to linearly approximate an arbitrary convex activation function, MFM does so via a competitive relationship. MFM can not only separate noisy and informative signals but also play the role of feature selection between two feature maps. Second, three networks are carefully designed to obtain better performance meanwhile reducing the number of parameters and computational costs. Lastly, a semantic bootstrapping method is proposed to make the prediction of the networks more consistent with noisy labels. Experimental results show that the proposed framework can utilize large-scale noisy data to learn a Light model that is efficient in computational costs and storage spaces. The learned single network with a 256-D representation achieves state-of-the-art results on various face benchmarks without fine-tuning. The code is released on https://github.com/AlfredXiangWu/LightCNN.Comment: arXiv admin note: text overlap with arXiv:1507.04844. The models are released on https://github.com/AlfredXiangWu/LightCNN, IEEE Transactions on Information Forensics and Security, 201

    Global and Local Consistent Wavelet-domain Age Synthesis

    Full text link
    Age synthesis is a challenging task due to the complicated and non-linear transformation in human aging process. Aging information is usually reflected in local facial parts, such as wrinkles at the eye corners. However, these local facial parts contribute less in previous GAN based methods for age synthesis. To address this issue, we propose a Wavelet-domain Global and Local Consistent Age Generative Adversarial Network (WaveletGLCA-GAN), in which one global specific network and three local specific networks are integrated together to capture both global topology information and local texture details of human faces. Different from the most existing methods that modeling age synthesis in image-domain, we adopt wavelet transform to depict the textual information in frequency-domain. %Moreover, to achieve accurate age generation under the premise of preserving the identity information, age estimation network and face verification network are employed. Moreover, five types of losses are adopted: 1) adversarial loss aims to generate realistic wavelets; 2) identity preserving loss aims to better preserve identity information; 3) age preserving loss aims to enhance the accuracy of age synthesis; 4) pixel-wise loss aims to preserve the background information of the input face; 5) the total variation regularization aims to remove ghosting artifacts. Our method is evaluated on three face aging datasets, including CACD2000, Morph and FG-NET. Qualitative and quantitative experiments show the superiority of the proposed method over other state-of-the-arts

    Learning Structured Ordinal Measures for Video based Face Recognition

    Full text link
    This paper presents a structured ordinal measure method for video-based face recognition that simultaneously learns ordinal filters and structured ordinal features. The problem is posed as a non-convex integer program problem that includes two parts. The first part learns stable ordinal filters to project video data into a large-margin ordinal space. The second seeks self-correcting and discrete codes by balancing the projected data and a rank-one ordinal matrix in a structured low-rank way. Unsupervised and supervised structures are considered for the ordinal matrix. In addition, as a complement to hierarchical structures, deep feature representations are integrated into our method to enhance coding stability. An alternating minimization method is employed to handle the discrete and low-rank constraints, yielding high-quality codes that capture prior structures well. Experimental results on three commonly used face video databases show that our method with a simple voting classifier can achieve state-of-the-art recognition rates using fewer features and samples

    A Coupled Evolutionary Network for Age Estimation

    Full text link
    Age estimation of unknown persons is a challenging pattern analysis task due to the lacking of training data and various aging mechanisms for different people. Label distribution learning-based methods usually make distribution assumptions to simplify age estimation. However, age label distributions are often complex and difficult to be modeled in a parameter way. Inspired by the biological evolutionary mechanism, we propose a Coupled Evolutionary Network (CEN) with two concurrent evolutionary processes: evolutionary label distribution learning and evolutionary slack regression. Evolutionary network learns and refines age label distributions in an iteratively learning way. Evolutionary label distribution learning adaptively learns and constantly refines the age label distributions without making strong assumptions on the distribution patterns. To further utilize the ordered and continuous information of age labels, we accordingly propose an evolutionary slack regression to convert the discrete age label regression into the continuous age interval regression. Experimental results on Morph, ChaLearn15 and MegaAge-Asian datasets show the superiority of our method

    Deep Supervised Discrete Hashing

    Full text link
    With the rapid growth of image and video data on the web, hashing has been extensively studied for image or video search in recent years. Benefit from recent advances in deep learning, deep hashing methods have achieved promising results for image retrieval. However, there are some limitations of previous deep hashing methods (e.g., the semantic information is not fully exploited). In this paper, we develop a deep supervised discrete hashing algorithm based on the assumption that the learned binary codes should be ideal for classification. Both the pairwise label information and the classification information are used to learn the hash codes within one stream framework. We constrain the outputs of the last layer to be binary codes directly, which is rarely investigated in deep hashing algorithm. Because of the discrete nature of hash codes, an alternating minimization method is used to optimize the objective function. Experimental results have shown that our method outperforms current state-of-the-art methods on benchmark datasets.Comment: Accepted by NIPS 201

    Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition

    Full text link
    Heterogeneous face recognition (HFR) aims to match facial images acquired from different sensing modalities with mission-critical applications in forensics, security and commercial sectors. However, HFR is a much more challenging problem than traditional face recognition because of large intra-class variations of heterogeneous face images and limited training samples of cross-modality face image pairs. This paper proposes a novel approach namely Wasserstein CNN (convolutional neural networks, or WCNN for short) to learn invariant features between near-infrared and visual face images (i.e. NIR-VIS face recognition). The low-level layers of WCNN are trained with widely available face images in visual spectrum. The high-level layer is divided into three parts, i.e., NIR layer, VIS layer and NIR-VIS shared layer. The first two layers aims to learn modality-specific features and NIR-VIS shared layer is designed to learn modality-invariant feature subspace. Wasserstein distance is introduced into NIR-VIS shared layer to measure the dissimilarity between heterogeneous feature distributions. So W-CNN learning aims to achieve the minimization of Wasserstein distance between NIR distribution and VIS distribution for invariant deep feature representation of heterogeneous face images. To avoid the over-fitting problem on small-scale heterogeneous face data, a correlation prior is introduced on the fully-connected layers of WCNN network to reduce parameter space. This prior is implemented by a low-rank constraint in an end-to-end network. The joint formulation leads to an alternating minimization for deep feature representation at training stage and an efficient computation for heterogeneous data at testing stage. Extensive experiments on three challenging NIR-VIS face recognition databases demonstrate the significant superiority of Wasserstein CNN over state-of-the-art methods

    M2FPA: A Multi-Yaw Multi-Pitch High-Quality Database and Benchmark for Facial Pose Analysis

    Full text link
    Facial images in surveillance or mobile scenarios often have large view-point variations in terms of pitch and yaw angles. These jointly occurred angle variations make face recognition challenging. Current public face databases mainly consider the case of yaw variations. In this paper, a new large-scale Multi-yaw Multi-pitch high-quality database is proposed for Facial Pose Analysis (M2FPA), including face frontalization, face rotation, facial pose estimation and pose-invariant face recognition. It contains 397,544 images of 229 subjects with yaw, pitch, attribute, illumination and accessory. M2FPA is the most comprehensive multi-view face database for facial pose analysis. Further, we provide an effective benchmark for face frontalization and pose-invariant face recognition on M2FPA with several state-of-the-art methods, including DR-GAN, TP-GAN and CAPG-GAN. We believe that the new database and benchmark can significantly push forward the advance of facial pose analysis in real-world applications. Moreover, a simple yet effective parsing guided discriminator is introduced to capture the local consistency during GAN optimization. Extensive quantitative and qualitative results on M2FPA and Multi-PIE demonstrate the superiority of our face frontalization method. Baseline results for both face synthesis and face recognition from state-of-theart methods demonstrate the challenge offered by this new database.Comment: Accepted for publication at ICCV2019; The M2FPA dataset is available at https://pp2li.github.io/M2FPA-dataset

    Foreground-aware Pyramid Reconstruction for Alignment-free Occluded Person Re-identification

    Full text link
    Re-identifying a person across multiple disjoint camera views is important for intelligent video surveillance, smart retailing and many other applications. However, existing person re-identification (ReID) methods are challenged by the ubiquitous occlusion over persons and suffer from performance degradation. This paper proposes a novel occlusion-robust and alignment-free model for occluded person ReID and extends its application to realistic and crowded scenarios. The proposed model first leverages the full convolution network (FCN) and pyramid pooling to extract spatial pyramid features. Then an alignment-free matching approach, namely Foreground-aware Pyramid Reconstruction (FPR), is developed to accurately compute matching scores between occluded persons, despite their different scales and sizes. FPR uses the error from robust reconstruction over spatial pyramid features to measure similarities between two persons. More importantly, we design an occlusion-sensitive foreground probability generator that focuses more on clean human body parts to refine the similarity computation with less contamination from occlusion. The FPR is easily embedded into any end-to-end person ReID models. The effectiveness of the proposed method is clearly demonstrated by the experimental results (Rank-1 accuracy) on three occluded person datasets: Partial REID (78.30\%), Partial iLIDS (68.08\%) and Occluded REID (81.00\%); and three benchmark person datasets: Market1501 (95.42\%), DukeMTMC (88.64\%) and CUHK03 (76.08\%)Comment: 10 pages, 7 figure

    Joint Iris Segmentation and Localization Using Deep Multi-task Learning Framework

    Full text link
    Iris segmentation and localization in non-cooperative environment is challenging due to illumination variations, long distances, moving subjects and limited user cooperation, etc. Traditional methods often suffer from poor performance when confronted with iris images captured in these conditions. Recent studies have shown that deep learning methods could achieve impressive performance on iris segmentation task. In addition, as iris is defined as an annular region between pupil and sclera, geometric constraints could be imposed to help locating the iris more accurately and improve the segmentation results. In this paper, we propose a deep multi-task learning framework, named as IrisParseNet, to exploit the inherent correlations between pupil, iris and sclera to boost up the performance of iris segmentation and localization in a unified model. In particular, IrisParseNet firstly applies a Fully Convolutional Encoder-Decoder Attention Network to simultaneously estimate pupil center, iris segmentation mask and iris inner/outer boundary. Then, an effective post-processing method is adopted for iris inner/outer circle localization.To train and evaluate the proposed method, we manually label three challenging iris datasets, namely CASIA-Iris-Distance, UBIRIS.v2, and MICHE-I, which cover various types of noises. Extensive experiments are conducted on these newly annotated datasets, and results show that our method outperforms state-of-the-art methods on various benchmarks. All the ground-truth annotations, annotation codes and evaluation protocols are publicly available at https://github.com/xiamenwcy/IrisParseNet.Comment: 13 page
    • …
    corecore